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Abstract A comparison of the effects of a rapidly

imposed water deficit with different leaf ages on chloro-

phyll a fluorescence and gas exchange was performed in

maize (Zea mays L.) plants. The relationships between

photosynthesis and leaf relative turgidity (RT) and ion

leakage were further investigated. Leaf dehydration sub-

stantially decreased net photosynthetic rate (A) and

stomatal conductance (Gs), particularly for older leaves.

With dehydration time, Fv/Fm maintained a relatively sta-

ble level for youngest leaves but significantly decreased for

the older leaves. The electron transport rate (ETR) sharply

decreased with intensifying dehydration and remained at

lower levels during continuous dehydration. The photo-

chemical quenching of variable chlorophyll fluorescence

(qP) gradually decreased with dehydration intensity for the

older leaves but increased for the youngest leaves, whereas

dehydration did not affect the nonphotochemical chloro-

phyll fluorescence quenching (NPQ) for the youngest

leaves but remarkably decreased it for the older leaves. The

leaf RT was significantly and positively correlated with its

Fv/Fm, ETR, and qP, and the leaf ion leakage was signifi-

cantly and negatively correlated with Fv/Fm and NPQ. Our

results suggest that the photosynthetic systems of young

and old leaves decline at different rates when exposed to

rapid dehydration.
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Introduction

Drought is a major constraint in crop productivity in many

regions of the world (Boyer 1982). C4 plants may have

higher CO2 fixation and water use efficiency (WUE) rela-

tive to C3 plants due to their anatomical and biochemical

specialization (Beale 1999; Morgan and others 2001; Niu

and others 2005; Kim and others 2006; Ripley and others

2007). However, this advantage is completely lost when

unwatered C4 plants undergo severe drought (Ripley and

others 2007), and actually poor productivity of maize (Zea

mays L.) is frequently attributed to inadequate moisture

(Leakey and others 2004). The studies on responses of

photosynthesis of maize to environmental conditions are

important for selecting varieties and managing practices to

obtain high productivity in a changing climate (Lal and

others 1996a; Ehleringer and others 1997; Yu and Setter

2003; Leakey and others 2004; Kim and others 2006).

Plants have many stress acclimation mechanisms such as

osmotic adjustment (Nayyar 2004), antioxidant defense

(Farrant and others 2004; Xu and Zhou 2006b), and syn-

thesizing stress protein (Young and others 2001; Bernacchia

and Furini 2004). Many studies have reported that stomatal

regulation may play an important role in photosynthetic

adaptation to drought stress (for example, Marques da Silva

and Arrabaca 2004). However, under severe water stress, the

fraction of nonstomatal limitation to photosynthesis may

Z. Z. Xu (&) � G. S. Zhou (&) � Y. L. Wang �
G. X. Han � Y. J. Li

State Key Laboratory of Vegetation and Environmental Change,

Institute of Botany, Chinese Academy of Sciences, 20

Nanxincun, Xiangshan, Beijing 100093, P. R. China

e-mail: xuzz@ibcas.ac.cn

G. S. Zhou

e-mail: gszhou@ibcas.ac.cn

Z. Z. Xu � G. S. Zhou

Institute of Atmospheric Environment, China Meteorological

Administration, Shenyang 110016, P. R. China

123

J Plant Growth Regul (2008) 27:83–92

DOI 10.1007/s00344-007-9035-2



increase (Thiagarajah and others 1981; Paponov and Engels

2003; Galmés and others 2007). Thus, the relative role and

proportion of stomatal and nonstomatal limitations in the

decrease of photosynthesis induced by water stress are still

being debated; different results may result from different

species (Georgieva and others 2005), stress intensities

(Lawlor and Cornic 2002; Grassi and Magnani 2005), leaf

ages (Thiagarajah and others 1981), and development stages

(Yoo and others 2003; Grassi and Magnani 2005).

The influence of water deficit on the patterns of fluores-

cence emission is well established (for example, Govindjee

and others 1981; Ogren 1990). The gas exchange and chlo-

rophyll fluorescence are described as good markers for plant

photosynthetic physiology in vivo, especially when mea-

sured simultaneously using a gas-exchange system with an

integrated fluorescence chamber head (Bernacchi and others

2003; Long and Bernacchi 2003; Ripley and others 2007).

Thus, the simultaneous measurements of CO2 exchange and

chlorophyll fluorescence under controlled light and tem-

perature conditions allow the researchers to obtain

concurrent measurements of the photosynthetic character-

istics of plants in either laboratory or field.

The acclimation of plant leaves to environmental stress is

closely associated with growth phases, duration of stress

(Behera and others 2003; Xu and Zhou 2007), leaf age (David

and others 1998; He and others 2002), expansion (Marques

da Silva and Arrabaca 2004), development (Tricker and

others 2004), colors (Field and others 2002), and longevity

(He and others 2002; Tricker and others 2004; Grassi and

Magnani 2005). Water stress could reduce the net photo-

synthetic rate associated with other leaf physiologic and

biochemical activities, leading to leaf senescence (Shah and

Paulsen 2003; Plaut and others 2004; Xu and Zhou 2006b).

Drought may be a major constraint in plant responses to

environmental factors, but studies on simultaneous changes

in photosynthesis and chlorophyll a fluorescence under

drought stress with leaf age are limited. In the present

experiment we simultaneously measured gas exchange and

chlorophyll a fluorescence to investigate the effects of

rapid water stress and different leaf ages on photosynthetic

and PSII activity, leaf water status, and ion leakage. We

aimed to assess how gas exchange and chlorophyll fluo-

rescence of leaves with different ages respond to rapid

dehydration and their relationships with leaf water status

and cell membrane damage.

Materials and Methods

Plant Materials

Zea mays L. plants (cv. Shendan 21) at the late jointing

stage, 60 days after sowing, were obtained from the field in

Jinzhou, Liaoling, China, a famous maize production belt,

in late June 2004. The 60-day-old plants were 1.4 m tall

and had 12 leaves per plant. The plants were excised from

the roots at ground level and brought back to the lab where

the dehydration treatment was applied in a controlled

environment room with a 14-h photoperiod, relative

humidity (RH) of 50–65%, and day/night temperatures of

28–30/18–20�C. The plants were exposed to a lower pho-

tosynthetic photon flux density (PPFD) of 280 lmol

photons m-2 s-1, provided by a combination of cool-white

fluorescent and incandescent lamps, to prevent excessively

rapid tissue dehydration. The dehydration treatment

method in a controlled environment has been widely used

because of its simplicity and feasibility in investigating the

physiologic metabolic response to rapid dehydration

(Georgieva and others 2005; Verslues and others 2006).

The leaves of each plant were separated into three age

levels for the measurements: top leaves (the youngest and

fully expanded leaves, about 10 days old, the 12th leaf

since sowing); middle leaves (mature leaves, about 20 days

old, the 9th leaf), and bottom leaves (older leaves, about

30 days old, the 6th leaf).

Leaf Relative Turgidity (RT)

The leaves were cut into small discs (about total 1 g fresh

weight) and fresh weights (FW) were obtained. The leaf

discs then were placed in a beaker (25 ml) filled with water

overnight in the dark. They were reweighed to give a fully

turgid fresh weight (TW) the next morning and dry weights

(DW) after drying at 80�C for 24 h in a drying oven.

Relative turgidity (RT) of the leaves is calculated by the

following expression (Barrs 1968):

RT (% ) = [(FW - DW)/(TW - DW)]� 100

Ion Leakage Determination

Ion leakage was determined according to a simplified

method from Garcı́a Mata and Lamattina (2001). This is

commonly used as an indicator of cell membrane sta-

bility (Blum and Ebercon 198l). Leaves were cut into

small discs (total 1.5 g fresh mass) and placed in beakers

(50 cm3) with 40 cm3 of deionized water. After incuba-

tion at 25�C for 12 h in dark conditions, the electrical

conductivity in the bathing solution was determined

(initial EC) with a conductivity meter (DDSJ-308A,

Shanghai Science Instrument Ltd, Shanghai, China).

Then the samples were heated at 85�C for 2 h and the

conductivity was read again in the bathing solution (final

EC). Electrolyte leakage was defined as EC (%) = (ini-

tial EC/final EC) 9 100.
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Leaf Gas Exchange and Chlorophyll Fluorescence

Leaf gas exchange measurements were coupled with the

measurements of chlorophyll fluorescence using an open

gas exchange system (LI-6400R; LI-COR, Inc., Lincoln,

NE, USA) with an integrated fluorescence chamber head

(LI-6400-40 leaf chamber fluorometer; LI-COR) and data

acquisition software (OPEN Software version 5.1, LI-

COR). The gas exchange parameters were recorded at

380 lmol mol-1 of [CO2] with 1500 lmol photons m-2 s-

1 of PPFD. At least three leaves were measured at three leaf

age levels: top (youngest and fully expanded), middle

(mature), and bottom (older) leaf levels of each plant,

totaling three plants each time and a total of four times per

plant. All leaves measured were attached to the detached

plants cut directly from the field to partly avoid other

effects such as wounding and regulation between source

and sink organs. After a 30-min adaptation to the dark at a

controlled temperature of 25�C, the minimal fluorescence

yield (F0) was measured by a modulated light that was

sufficiently low (\0.1 lmol photons m-2 s-1) so as not to

induce any significant variable fluorescence, and the

maximal fluorescence yield (Fm) was determined by a 0.8-s

saturating pulse at 7000 lmol photons m-2 s-1 in dark-

adapted leaves. The leaves were then continuously illu-

minated with a white actinic light at an intensity of

1500 lmol photons m-2 s-1 (the average mid-day PPFD

value for the plants) for 30 min. The steady-state value of

fluorescence (Fs) was thereafter recorded and the second

saturating pulse at 7000 lmol photons m-2 s-1 was

imposed to determine the maximal light-adapted (F0m)

fluorescence level. The actinic light was removed and the

minimal fluorescence level in the light-adapted state (F00)

was determined after 3 s of far-red illumination. The

fluorescence parameters were obtained from the following

formulas (van Kooten and Snel 1990): the maximal effi-

ciency of PSII photochemistry, Fv/Fm = (Fm - F0)/Fm; the

photochemical quenching of variable chlorophyll fluores-

cence, qP = (F0m - FS)/(F0m - F00); the relative change of

minimum chlorophyll fluorescence, q0 = (F0 - F00)/F0;

and the nonphotochemical chlorophyll fluorescence

quenching, NPQ = (Fm - F0m)/F0m.

The electron transport rate ETR = (F0m - FS)/F0m 9

fIaleaf, where f is the fraction of absorbed quanta that is

used by PSII and is typically assumed to be 0.4 for C4. I is

PPFD, and aleaf is effective leaf absorptance, which is

assumed to be 0.85 (Maxwell and Johnson 2000).

Statistical Analysis

All statistical analyses of variance (ANOVA) were per-

formed using SPSS v10.0 (SPSS, Chicago, IL, USA).

Effects of water stress, leaf age, and their interactions were

analyzed using a two-way ANOVA (p = 0.05). Differ-

ences between the means among water stress and leaf age

treatments were compared using Duncan’s multiple-range

tests at 0.05 probability levels. For the relationships of

photosynthesis with RT and ion leakage level, linear

regression analysis was also performed (p = 0.05).

Results

Changes in Leaf Relative Turgidity and Ion Leakage

Similar change trends of relative turgidity (RT) with dehy-

dration were found for leaves of three ages: top (youngest

and fully expanded), middle (mature), and bottom (older).

Leaf RT decreased gradually from the beginning of dehy-

dration, and the older leaves had lower RT values

(Figure 1A). In contrast, the older leaves had higher levels of

ion leakage, followed by the mature and the youngest leaves.

Leaf ion leakage was significantly different due to leaf ages

(p \ 0.05, Figure 1B), and increased gradually with inten-

sifying dehydration, especially for the older leaves. In the

overall dehydration period, there were significant effects of

dehydration, leaf age, and their interactions (p \ 0.05)

according to two-way ANOVA.

Changes in Gas-Exchange Parameters

There were lower leaf net photosynthetic rates (A) and

stomatal conductances (Gs) (Figure 1C, D), but higher

intercellular CO2 concentrations (Ci) (Figure 1E) for the

older leaves compared to the younger leaves, indicating

that the youngest leaves exhibited higher photosynthetic

capacities under dehydration stress compared to the older

leaves. The values of A and Gs decreased with dehydration

time, particularly for the older leaves, whereas the values

of Ci remained relatively stable (Figure 1C, D). The main

effects and their interactions were significant (p \ 0.05),

based on two-way ANOVA.

Changes in Chlorophyll Fluorescence Parameters

The maximal efficiency of PSII photochemistry (Fv/Fm)

was not significantly affected by dehydration for the

youngest leaves but significantly decreased for the older

leaves after 2 days of dehydration (Figure 2A). The elec-

tron transport rate (ETR), at 1500 lmol photons m-2 s-1

of the PPFD, decreased with dehydration time but main-

tained a higher level for the youngest leaves 4 days after

dehydration (Figure 2B).
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The photochemical quenching of variable chlorophyll

fluorescence (qP) decreased gradually with intensity of

dehydration for the mature and the older leaves but dra-

matically increased for the youngest leaves at the later

stage (Figure 2C). Leaf dehydration did not significantly

affect the nonphotochemical chlorophyll fluorescence

quenching (NPQ) of the youngest leaves except for the last

two days of dehydration, but deceased it for the older

leaves (Figure 2D). Leaf dehydration significantly

increased the relative change of minimum chlorophyll

fluorescence (q0) for the older leaves and led to compli-

cated changes for both mature and young leaves

(Figure 2E). The effects of dehydration, leaf age, and their

interactions were significant (p \ 0.05) as the data were

used for overall dehydration period.

Relationship between Chlorophyll a Fluorescence and

Relative Turgidity (RT)

The values of leaf RT were significantly and positively

linearly correlated with Fv/Fm (y = 0.0045x + 0.395;

R2 = 0.60**, p \ 0.01) (Figure 3A) and ETR (y = 2.305x

- 130.41; R2 = 0.49**, p \ 0.01) (Figure 3B). For the

fluorescence quenching parameters, there was a significant

and positive correlation between RT and qP (y = 0.0086x

- 0.343; R2 = 0.47*, p \ 0.01) (Figure 3C). However,

there was only weak correlation between RT and NPQ

(y = 0.0186x + 0.776; R2 = 0.111, p = 0.09; Figure 3D)

and q0 (y = -0.0004x + 0.107; R2 = 0.002, p = 0.83;

Figure 3E).

Relationships Between Ion Leakage and Gas Exchange

and Chlorophyll a Fluorescence

Leaf ion leakage was significantly and negatively correlated

with leaf net photosynthetic rate (y = -0.834x + 51.031;

R2 = 0.49**, p \ 0.001; Figure 4A) and stomatal conduc-

tance (y = -0.0041x + 0.495; R2 = 0.35**, p \ 0.01)

(Figure 4B) but positively correlated with intercellular CO2

concentration (y = 2.541x + 156.63; R2 = 0.31**,

p = 0.006) (Figure 4C).

Leaf ion leakage was significantly and negatively cor-

related with Fv/Fm (y = -0.006x + 1.002; R2 = 0.42**,

Fig. 1 Effects of dehydration on leaf relative turgidity (RT) (A), ion

leakage (B), net photosynthetic rate (A) (C), stomatal conductance

(Gs) (D), and intercellular CO2 concentration (Ci) (E) in the three leaf

ages: top (youngest and fully expanded), middle (mature), and bottom

(older) leaf levels of Z. mays. The gas-exchange measurement was

done at a light level of PPFD of 1500 lmol photons m-2 s-1. Vertical

bars represent ± SE of the mean (n = 3)
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p \ 0.01) (Figure 5A) but not significantly with ETR

(y = -0.922x + 80.554; R2 = 0.05, p = 0.31) (Fig-

ure 5B). Leaf ion leakage did not have a close correlation

with qP (y = 0.0013x + 0.250; R2 = 0.004, p = 0.767)

(Figure 5C) but was significantly and negatively correlated

with NPQ (y = -0.058x + 4.882; R2 = 0.46**,

p \ 0.001) (Figure 5D) and significantly and positively

correlated with q0 (y = 0.005x - 0.168; R2 = 0.23*,

p = 0.022) (Figure 5E).

There were significantly positive linear relationships of

A with Fv/Fm (y = 0.0041x + 0.673; R2 = 0.27*,

p = 0.011) and with ETR (y = 1.514x + 18.774;

R2 = 0.19*, p = 0.038; Figure 6), indicating that the

decrease in photosynthesis was partly explained by the

decline in PSII function.

Discussion

The underlying mechanism of the photosynthetic response

of plants, particularly C4 plants, to drought is still being

studied in both lab and field experiments (Lawlor and

Cornic 2002; Marques da Silva and Arrabaca 2004; Ripley

and others 2007). In the present study, the plants excised

from the roots at ground level rapidly underwent dehy-

dration in a controlled-environment room, which may

assess a rapid response to dehydration to understand

underlying physiologic mechanisms (Blum and Ebercon

198l; Georgieva and others 2005; Verslues and others

2006). The present study determines how gas exchange and

chlorophyll fluorescence of leaves of different ages respond

concurrently to rapid dehydration, and their relationships

with leaf water status and cell membrane damage. The

results suggested that the photosynthetic systems of young

and old leaves might decrease at different rates when

exposed to rapid dehydration, which is associated with cell

membrane damage.

Under mild-to-moderate water stress, about two thirds of

the decline in the net photosynthetic rate (A) is attributable

to stomatal limitation (Grassi and Magnani 2005). How-

ever, with heightened water stress intensity, nonstomatal

limitation increases progressively, even playing a major

role, for example, through inhibiting biochemical metab-

olism and adversely affecting chlorophyll a fluorescence

Fig. 2 Effects of dehydration on the maximal efficiency of PSII

photochemistry (Fv/Fm) (A), the electron transport rate (ETR) (B), the

photochemical quenching of variable chlorophyll fluorescence (qP)

(C), the nonphotochemical chlorophyll fluorescence quenching

(NPQ) (D), and the relative change of minimum chlorophyll

fluorescence (q0) (E) in the three leaf ages: top (youngest and fully

expanded), middle (mature), and bottom (older) leaf levels of Z. mays.

The measurement light level was PPFD of 1500 lmol photons m-2 s-

1. Vertical bars represent ± SE of the mean (n = 3)
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(Schulze 1986; Lu and Zhang 1999; Grassi and Magnani

2005; Xu and Zhou 2006a; Ripley and others 2007).

Saccardy and others (1996) and Marques da Silva and

Arrabaca (2004) indicated that stomatal limitation is a

major factor in decreased photosynthesis of water-stressed

C4 plants, whereas with maize leaf aging and senescence,

the intercellular CO2 concentration (Ci) increases, indi-

cating that the activity of the carboxylating system is more

decreased than stomatal conductance (Thiagarajah and

others 1981; Paponov and Engels 2003). The A of dehy-

drated maize leaves declines rapidly as the RT decreases

from 100% to 60%, whereas maximal efficiency of pho-

tosystem II (PSII) photochemistry (Fv/Fm) remains

relatively constant, declining only when RT is less than

60% (Figure 2A). No reduction in Fv/Fm under moderate

drought was also reported in maize leaves by Lu and Zhang

(1999), but it declined in some C4 grasses (Ghannoum and

others 2003) and C3 Quercus pubescens (Gallé and others

2007). The present study showed that A, stomatal con-

ductance (Gs), and Fv/Fm were reduced together by severe

dehydration for the older leaves. However, although it is

noted that downregulation of photochemistry occurs in

response to stomatal limitation, this does not mean that

photosynthesis impose additional nonstomatal limitations.

Compared with old leaves, the younger leaves may have

greater plasticity to acclimate to dehydration, and their

nonstomatal limitations are more profound with continuous

water stress (Lal and others 1996b). Nevertheless, stomatal

limitation’s relative role still needs to be reassessed.

The relationship between A and PSII efficiency can

assess the energy efficiency of CO2 fixation; for example,

that less CO2 is fixed per transported electron suggests that

there is an increase in electron transport to a process such

as photorespiration, O2 reduction, and nitrogen assimilation

rather than to CO2 acclimation (Watling and others 2000;

Siebke and others 2003). Saccardy and others (1998)

reported that A gradually decreased with dehydration, but

ETR decreased until below 60% of maize leaf RT. The

results of Ghannoum and others (2003), and Ripley and

others (2007) showed that A, ETR, and quantum yield of

PSII of four C4 grasses decreased rapidly with increasing

drought. The present experiment showed that the positively

close correlation of A with Fv/Fm and ETR (Figure 6)

indicates that a reduction in photosynthesis may partly be

explained by PSII function. Furthermore, in our experi-

ment, in young leaves A and ETR declined during the first

2 days of dehydration. After 2 days of dehydration,

although A declined with decreasing Gs, ETR increased

Fig. 3 The relationships between fluorescence parameters and rela-

tive turgidity (RT) for the leaves of Z. mays. A Fv/Fm, B ETR, C qP,

D NPQ, E q0. The measurement light level was PPFD of 1500 lmol

photons m-2 s-1 (n = 36)
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(Figures 1C, D, 2B), suggesting that severe dehydration

triggers the functioning of an alternative flux of electrons,

such as O2 reduction, which acts as a protection mechanism

for PSII from photoinactivation and damage (Siebke and

others 2003; Farage and others 2006; Ripley and others

2007).

In the present study, no net CO2 fixation was observed in

the last 2 days of dehydration (Figure 1C), indicating that

the net photosynthetic rate may equate with respiration rate

under severe water stress (Liu and Li 2005). The two

fundamental processes are important to plant performance

(Ryan 1991; Turnbull and others 2002); in particular, they

can result in the transfer of ATP and the reduction of power

between mitochondria and chloroplasts (Maurousset and

others 1992; Lawlor and Cornic 2002). This is closely

correlated with cell membrane damage, using ion leakage

as the index (Garcı́a Mata and Lamattina 2001; Stevens and

others 2006). In the current study, ion leakage increase

induced by dehydration may indicate the adverse effect on

photosynthesis (Figures 1B, C, 4A). Furthermore, the

association of PSII function with cell membrane stability

depends on genotype (Georgieva and others 2005), and that

issue requires further investigation.

A decrease in photochemical quenching of variable

chlorophyll fluorescence (qP) was observed under water

stress in leaves of Sorghum bicolor (Loreto and others

1995), Setaria sphacelata (Marques da Silva and Arrabaca

2004), and Quercus pubescens (Gallé and others 2007),

although the extent of inhibition may depend on water-

stress tolerance of the species (Georgieva and others 2005)

and water-stress intensity (Marques da Silva and Arrabaca

2004). The present result showed that qP increased gradu-

ally with intensification of dehydration for the youngest

leaves but decreased for the old leaves (Figure 2C), which

is in contrast with changes in A. It is suggested that the

decrease in photosynthesis may partially result from sto-

matal limitation during the first 2 days of dehydration,

whereas an increase in qP after 2 days of dehydration in

young leaves (Figure 2C) may result from the operation of

an alternative sink to CO2 assimilation for photosynthetic

reducing equivalents, possibly oxygen reduction via a

Mehler reaction (Farage and others 2006). However, more

studies are needed to distinguish the differences.

The nonphotochemical quenching of chlorophyll fluo-

rescence (NPQ) increased with moderate water stress but

decreased under severe water stress (Marques da Silva and

Arrabaca 2004). In most drought studies, at RWC below

approximately 75%, a large NPQ cannot be fully reversed

by increased Ci, indicating that factors other than CO2

supply limit A (Lawlor and Cornic 2002), partly leading to

a decrease in the ability to dissipate excess energy indi-

cated by NPQ (Golan and others 2006). In our study, leaf

dehydration did not affect the NPQ for the youngest leaves

but remarkably reduced it for the older leaves (Figure 2D),

also indicating a lower ability to regulate excess energy for

the latter. Furthermore, there were significant and negative

relationships between NPQ and ion leakage. It is suggested

that the older leaves may be close to the maximal capacity

of heat dissipation under severe dehydration, and dehy-

dration may trigger damage to dissipating mechanisms as a

result of impaired pumping of protons or membrane leak-

age. The relative change of minimum chlorophyll

fluorescence (q0) can quantify the thermal dissipation

processes within PSII complexes and may be connected

with the electron flow-regulating mechanisms, inactivation

of PSII reaction centers (photoinhibition and
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photodestruction), violaxanthin de-epoxidation, and con-

formation changes within pigment-protein complexes

(Šiffel and Vácha 1998; Roháček 2002). Our results

showed that dehydration significantly increased q0 for the

older leaves (Figure 2E), also indicating a more adverse

effect of dehydration on the thermal dissipation processes

for the older leaves relative to the young.

The most characteristic effects of water stress on plant

growth are ascribed to the decrease in leaf expansion and

photosynthetic rate (Marques da Silva and Arrabaca 2004;

Xu and Zhou 2005). Water stress could reduce A, thus

accelerating senescence (Shah and Paulsen 2003; Plaut and

others 2004) and consequently reducing the regulating

capacity to tolerate drought (Xu and others 1995; Chaves

and others 2003). Thiagarajah and others (1981) reported

that the biochemical limitation proportion increases with

maize leaf senescence. Chlorophyll content and the chlo-

rophyll/carotenoid ratio decrease during leaf senescence

(Lu and Zhang 1998; He and others 2002), which is closely

associated with leaf age (David and others 1998), sug-

gesting that leaf aging/senescing may be responsible for a

decrease in heat dissipation, a photoprotective mechanism.

Thus, photosynthetic response to dehydration may depend

on leaf aging/senescing.

Our results show that the effect of dehydration on

photosynthesis and the activity of PSII varies with leaf age,
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both in stomatal and biochemical limitations, suggesting

that photosynthetic plasticity to rapid water stress may

depend on leaf growth stage. The result is significant in

view of global climate change because water stress often

occurs at later C4 plant growth stages in semiarid regions

(Marques da Silva and Arrabaca 2004; Kim and others

2006). Improvement in senescence tolerance by genetic

methods and/or field water management practices would

enable the C4 plant to adapt to drought.
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Šiffel P, Vácha F (1998) Aggregation of the light-harvesting complex

in intact leaves of tobacco plants stressed by CO2 deficit.

Photochem Photobiol 67:304–311

Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid

induces salinity tolerance in tomato (Lycopersicon esculentum
cv. Roma): associated changes in gas exchange, water relations

and membrane stabilisation. Plant Growth Regul 49:77–83

Thiagarajah MR, Hunt LA, Mahon JD (1981) Effects of position and

age on leaf photosynthesis in corn (Zey mays). Can J Bot 59:28–33

Tricker PJ, Calfapietra C, Kuzminsky E, Puleggi R, Ferris R, Nathoo

M, Pleasants LJ, Alston V, de Angelisand P, Taylor G (2004)

Long-term acclimation of leaf production, development, lon-

gevity and quality following 3 yr exposure to free-air CO2

enrichment during canopy closure in Populus. New Phytol

162:413–426

Turnbull MH, Murthy R, Griffin KL (2002) The relative impacts of

daytime and night-time warming on photosynthetic capacity in

Populus deltoides. Plant Cell Environ 25:1729–1737

van Kooten O, Snel JFH (1990) The use chlorophyll fluorescence

nomenclature in plant stress physiology. Photosynth Res 25:147–

150

Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K (2006)

Methods and concepts in quantifying resistance to drought, salt

and freezing, abiotic .stresses that affect plant water status. Plant

J 45:523–539

Watling JR, Press MC, Quick WP (2000) Elevated CO2 induces

biochemical and ultrastructural changes in leaves of the C4

cereal sorghum. Plant Physiol 123:1143–1152

Xu ZZ, Zhou GS (2005) Effects of water stress and high nocturnal

temperature on photosynthesis and nitrogen level of a perennial

grass Leymus chinensis. Plant Soil 269:131–139

Xu ZZ, Zhou GS (2006a) Nitrogen metabolism and photosynthesis in

Leymus chinensis in response to long-term soil drought. J Plant

Growth Regul 25:252–266

Xu ZZ, Zhou GS (2006b) Combined effects of water stress and high

temperature on photosynthesis, nitrogen metabolism and lipid

peroxidation of a perennial grass Leymus chinensis. Planta

224:1080–1090

Xu ZZ, Zhou GS (2007) Photosynthetic recovery of a perennial grass

Leymus chinensis after different periods of soil drought. Plant

Prod Sci 10:277–285

Xu ZZ, Yu ZW, Dong QY, Qi XH, Yu SL (1995) Effects of soil

drought on ethylene evolution, polyamine accumulation and cell

membrane in flag leaf of winter wheat. Acta Phytophysiol Sin

23:370–375

Yoo SD, Greer DH, Laing WA, McManus MT (2003) Changes in

photosynthetic efficiency and carotenoid composition in leaves

of white clover at different developmental stages. Plant Physiol

Biochem 41:887–893

Young TE, Ling J, Geisler-Lee CJ, Tanguay RT, Caldwell C, Gallie

DR (2001) Developmental and thermal regulation of the maize

heat shock protein, HSP101. Plant Physiol 127:777–791

Yu LX, Setter TL (2003) Comparative transcriptional profiling of

placenta and endosperm in developing maize kernels in response

to water deficit. Plant Physiol 131:568–582

92 J Plant Growth Regul (2008) 27:83–92

123


	Changes in Chlorophyll Fluorescence in Maize Plants with Imposed Rapid Dehydration at Different Leaf Ages
	Abstract
	Introduction
	Materials and Methods
	Plant Materials
	Leaf Relative Turgidity (RT)
	Ion Leakage Determination
	Leaf Gas Exchange and Chlorophyll Fluorescence
	Statistical Analysis

	Results
	Changes in Leaf Relative Turgidity and Ion Leakage
	Changes in Gas-Exchange Parameters
	Changes in Chlorophyll Fluorescence Parameters
	Relationship between Chlorophyll a Fluorescence and Relative Turgidity (RT)
	Relationships Between Ion Leakage and Gas Exchange and Chlorophyll a Fluorescence

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


